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Firm Size and R&D Spending: Testing for Functional Form 

I. Introduction 

One of the most frequently investigated topics in the economics of technological change literature 
is the relationship between firm size and the corresponding level of R&D spending. Over more 
than three decades researchers have been examining numerous functional forms in an effort to de- 
termine whether larger firms spend more on R&D relative to their size than do smaller firms. Over 
time, a double-log regression model has evolved to be the "accepted" specification.' However, 
the statistical appropriateness of a particular functional form has received almost no attention.2 

This paper tests for functional form using an extended Box-Cox model. We conclude from 
our analysis of firm-level industrial data that there is considerable evidence to suggest that the 

double-log specification is, in fact, the most appropriate within the class of models represented 
by the Box-Cox transformation. 

II. The Analytical Framework 

Consider the following model relating the ith firm's R&D expenditures, RDi, to its size, Si: 

RDI')= a + S 2)+ E (1) 

where 
RDI')- (RD"' - 1)/A1 

if A1i 0 and RD 
- 

= 
InRDi if 

A1 
= 0, and the values of 

SA2) are similarly defined. Such a specification is what Savin and White [6] refer to as the Box-Cox 
extended model to distinguish it from the original Box-Cox [2] paper which primarily dealt with 
transformations of the dependent variable. 

If Ei is assumed to be normally and independently distributed with zero mean and constant 
variance o-2, then the log-likelihood function for equation (1) is: 

L= - (n/2) In 2rT - (n/2) In o-2 

- (1/o-2) (RD') - a - SlA2))2 
+ (A I - 1) Z In RDi. (2) 

L is a complicated nonlinear function of a, 8, A1, and A2. Spitzer [7] has recently developed 
a powerful algorithm for the numerical maximization of this specific function. Once the log 

1. Much of this literature is reviewed in Kamien and Schwartz [3]. Two recent studies that posit a double-log 
regression model are by Mansfield [5] and Bound et al. [1]. 

2. The one exception is the study by Loeb and Lin [4]. They employ a set of tests due to Ramsey. Ramsey's tests 
identify model specification errors but they do not specifically identify a single functional form from within a class, as 
does the analysis below. Their data fit a quadratic specification best. 
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likelihood function is maximized, it is easy to perform likelihood ratio tests on four alternative 
functional forms using the statistic 

X = 2[L(A•1,A2) - L(Ai,A2)] (3) 

which has asymptotically a chi-square distribution with two degrees of freedom, A1 and A2 denote 
the maximum likelihood estimates, and AI and A2 are values to be tested. 

This procedure is attractive because equation (1) nests four common functional forms. De- 

pending on the values of AI and A2, we can have the double-log model, a linear model, or a model 
that is semilog in either the dependent or independent variables. Specifically we have: 

lnRDi = a + ,8 InSi + Ei if A = O, A2 = 0; (4) 

lnRDi = a + PSi + Ei ifA1 = 0;A2 = 1; (5) 

RDi = a +,8 InSi + Ei ifA1 = 1;A2 = 0; (6) 

RDi = a + fSi + E if Al = 1;A2 = 1. (7) 

III. The Statistical Results 

Equation (1) was estimated by maximum likelihood for nine separate industry groupings using 
1985 firm data on R&D expenditures reported in Business Week's "R&D Scoreboard." Firm 
size was measured as 1985 sales, as reported in Business Week's "Corporate Scoreboard." 3 The 
statistical results are shown in Table I. 

In seven of the nine industry studied, we could not reject the null hypothesis that AI = A2 = 0 
when testing at either the .05 or .01 level. This result was found in electronics, chemicals, ma- 

chinery, fuel, instruments, oil service, and miscellaneous manufacturing. In these industries, the 

double-log model is not sharply different from the optimal model within the class of models repre- 
sented by equation (1). Further, the three alternative simple functional forms were almost always 
decisively rejected by the chi-square test, with only a semilog transformation of the dependent 
variable being competitive. This semilog model was not rejected at the .05 level in two cases 

(machinery and instruments) and in other cases was usually less vigorously rejected than the other 
two simple functional forms. 

In one of the nine industries none of the simple functional forms were acceptable at the 
.01 level (computers), and in another industry none was acceptable at the .05 level (food and 

beverage). However, even though all the four simple forms were rejected in these two industries, 
it is reassuring that the double-log model is again closest to acceptance in the sense of having the 

lowest chi-square value. If one were willing to accept some error in the functional form in return 

for a simple form of the model, the double-log model would again be the choice. Thus, in all 
of the nine cases it was found that the double-log model was either not rejected or was close to 

non-rejection. 
One important feature of the results in Table I concerns the misleading results that could 

3. Some firms listed in the "R&D Scoreboard" were not listed in the "Corporate Scoreboard." Rather than approx- 
imate the sales of those firms from the R&D-to-sales ratio in the "R&D Scoreboard" (carried there to only one decimal 

point), these few firms were eliminated. 
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Table I. Maximum Likelihood Estimates from Equation (1) (standard errors in parentheses) 

AI A2 L(A, A2) X2 R2 

Electronics (n = 41) 

Optimal Model 0.166 0.179 -164.761 - 0.857 
(0.089) (0.115) 

Double-log 0 0 -166.455 3.388 0.812 
Semilog (RD) 0 1 -187.660 45.798** 0.471 
Semilog (S) 1 0 - 248.054 166.586** 0.544 
Linear 1 1 -206.523 83.524** 0.940 

Chemicals (n = 32) 

Optimal Model 0.198 0.226 -141.837 - 0.865 
(0.100) (0.115) 

Double-log 0 0 - 144.017 4.360 0.811 
Semilog (RD) 0 1 -159.794 35.914** 0.494 
Semilog (S) 1 0 -198.537 113.400** 0.601 
Linear 1 1 -169.408 55.142** 0.935 

Food and Beverage (n = 23) 

Optimal Model 0.384 0.772 -79.606 - 0.814 
(0.168) (0.275) 

Double-log 0 0 -83.182 7.152* 0.727 
Semilog (RD) 0 1 -84.034 8.856* 0.706 
Semilog (S) 1 0 -97.685 36.158** 0.584 
Linear 1 1 -87.968 16.724** 0.821 

Computers (n = 20) 

Optimal Model 0.344 0.244 -100.157 - 0.958 
(0.104) (0.113) 

Double-log 0 0 - 106.147 11.980** 0.896 
Semilog (RD) 0 1 -123.764 47.214** 0.396 
Semilog (S) 1 0 -145.466 90.618** 0.588 
Linear 1 1 -117.236 34.158** 0.976 

Machinery (n = 18) 

Optimal Model 0.332 0.921 -55.658 - 0.769 
(0.194) (0.398) 

Double-log 0 0 -57.927 4.538 0.611 
Semilog (RD) 0 1 -57.577 3.836 0.626 
Semilog (S) 1 0 -74.478 37.640** 0.582 
Linear 1 1 -65.803 20.290** 0.841 

be reached by a naive comparison of the R 2 values. Since the dependent variable is not constant 
across the four simple functional forms, the values of R 2 are not comparable, as is well known. 
Still, researchers often appeal to high values of R2 as at least a rough measure of goodness-of-fit, 
and this criterion would be highly deceptive here. 

For example, in the electronics industry, the linear model produces an R2 of .940 but is 
decisively rejected by a chi-square value of 83.524. In contrast, the double-log model yields an R 2 
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Table I. Continued 

Al A 2 L(A 1, A 2) X2 R2 

Fuel (n = 17) 

Optimal Model 0.220 0.308 -83.758 - 0.843 
(0.144) (0.165) 

Double-log 0 0 -85.804 4.092 0.807 
Semilog (RD) 0 1 -92.405 17.292** 0.581 
Semilog (S) 1 0 -105.063 42.610** 0.467 
Linear 1 1 -95.417 23.318** 0.829 

Instruments (n = 15) 

Optimal Model -0.024 0.328 -63.264 - 0.541 
(0.271) (0.520) 

Double-log 0 0 -63.456 0.384 0.534 
Semilog (RD) 0 1 -64.037 1.546 0.496 
Semilog (S) 1 0 -70.414 14.300** 0.560 
Linear 1 1 -71.373 16.218** 0.500 

Oil Service and Supply (n = 14) 

Optimal Model 0.574 0.054 -49.887 - 0.805 
(0.260) (0.320) 

Double-log 0 0 -52.414 5.053 0.740 
Semilog (RD) 0 1 -55.855 11.935** 0.575 
Semilog (S) 1 0 -51.469 3.163 0.798 
Linear 1 1 -53.588 7.401* 0.726 

Miscellaneous Manufacturing (n = 42) 

Optimal Model -0.255 -0.041 -140.180 - 0.673 
(0.144) (0.263) 

Double-log 0 0 -142.823 5.286 0.687 
Semilog (RD) 0 1 -146.997 13.634** 0.618 
Semilog (S) 1 0 -221.090 161.820** 0.420 
Linear 1 1 -200.332 120.304** 0.784 

*significant at the .05 level (> 5.99) 
**significant at the .01 level (> 9.21) 

of .812 yet its chi-square value of 3.388 suggests it is not distinguishable from the optimal model. 

Inspection of the table shows that almost invariably the R2 criterion would lead to an erroneous 
model choice. (R2 is defined as the squared correlation of the predicted and actual values.) 

The industry estimates in Table I can be compared easily across different functional forms 
if we employ an elasticity. Following Savin and White [6], the elasticities were computed at the 
mean value of both the dependent and independent variables, and are reported in Table II.4 For 
the double-log model, the calculated values range from 0.752 to 1.288. The average for all nine 
industries (weighted by sample size) is 1.050, extremely close to unity. For the optimal model, 
the range is 0.675 to 1.464, with a weighted mean of 1.074. 

4. Savin and White [6] note the elasticity for equation (1) is given by P(A2 i/RDA ). In the double-log model where 
A = A2 = 0, this gives the familiar result that p is the elasticity. When A1 

= A2 = 1, the elasticity is P times the ratio of 
the means. 
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Table II. Calculated Elasticities from Table I 

Industry Optimal Double-log Semilog (RD) Semilog (S) Linear 

Electronics 0.994 1.005 0.443 1.267 0.964 
Chemicals 1.053 1.068 0.562 1.150 0.969 
Food and Beverage 1.045 0.940 1.138 0.738 1.075 

Computers 0.992 1.090 0.491 0.979 0.854 

Machinery 1.153 1.288 1.103 1.542 1.569 
Fuel 0.998 0.893 0.989 0.588 1.023 
Instruments 0.757 0.752 0.591 0.870 0.670 
Oil Service and Supply 0.675 0.797 0.765 0.628 0.652 
Miscellaneous Manufacturing 1.464 1.275" 0.856 1.857 1.797 

*significantly different from unity at the .05 level 

Finally, we tested the null hypothesis that the elasticity equals unity using the values of / 
from the double-log model. In eight of nine cases, as noted in Table II, we could not reject the 
null hypotheses of unitary elasticity when testing at the .05 level. Testing hypotheses about the 

elasticity is of course easy for the double-log model because standard errors are available. To 
our knowledge it is not similarly possible to test hypotheses about elasticities for the other three 
functional forms since a standard error is not directly available.5 

IV. Conclusions 

While conventional wisdom is not always the best guide, in the topic investigated here the common 

practice appears to be quite accurate. For more than three decades researchers have explored 
the R&D-to-size relationship. Many now simply posit a double-log regression model and, after 

testing, conclude that the estimated elasticity is close to unity. Here, we have systematically 
investigated the appropriateness of alternative function forms, and we find evidence to suggest 
that the customary practice is not inappropriate. 

Albert N. Link 

Terry G. Seaks 
Sabrina R. Woodbery 

University of North Carolina at Greensboro 
Greensboro, North Carolina 

5. One should be cautioned in attempting to compute the standard errors for the elasticities associated with equations 
(5), (6), and (7) by allowing only for the randomness in /. For example, the elasticity for equation (7) is estimated by 
/3(S/RD), but a confidence interval for this elasticity cannot be based upon (S RD) times the two endpoints of the interval 

(/3 - ts ) because this captures only the sampling error in / while ignoring the sampling error in (S RD). 
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