Agglomeration Effects in Russian Manufacturing

Vladislav Gordeev, Rustam Magomedov and Tatiana Mikhailova

RANEPA, Moscow

January 17, 2017

Agglomeration effects

- Productivity is higher where economic activity is concentrated
 - Large cities, high population density, clusters
- Mechanisms?
 - First and second nature of geography (endogeniety!)
 - Pure agglomeration externalities (sharing, matching, learning)
 - Selection (firm survival and migration)
- Empirical evidence: Ciccone&Hall (1996), ..., Rosenthal &Strange (2008) Combes et al. (2010) - worker selection, (2012) - firm selection
 - Raw elasticity of productivity to city size = 4 to 10%
 - Instrumenting city size = 2 3% (history, geology)
 - Accounting for worker selection = 2 3%
 - Firm selection effect is weak and rare

- First and second nature factors work independently of agglomeration
 - Geographical variance in productivity
- Central places and remote places
 - Agglomeration in central places is easier (Redding &Venables (2004), Combes et al. (2008))
- Access to markets and market extent
 - Agglomeration externalities, competition, selection work on different spatial scales (distance) (Rosenthal&Strange (2004, 2008))
 - Acceturo et al. (2013) geo base for firm selection is wider
- Transport links change the definitions of proximity, centrality, agglomeration!

Why is this important for Russia?

- No prior measures of agglomeration benefits for Russian cities (except for Lobko (2010) - cement industry)
 - They might be larger than in OECD countries: land area = high transport cost = bigger benefits of proximity
 - They might be smaller: technology, resources, Soviet legacy, weak competition
- Collecting hard evidence to inform spatial (regional) policy
 - "Strategiya Prostranstvennogo Razvitiya" (Strategy of Spatial Development) - MEDT
- Studying the long-term effects of Soviet policy
 - "Old" and "new" cities are agglomeration effects different?
 - Local industrial structure (mono-cities, effects inside and across industries)

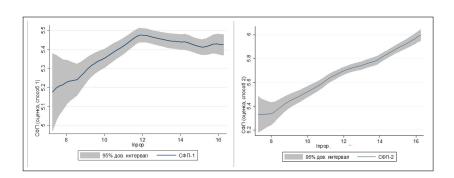
What we do + plans and ideas

- Measure firm productivity
 - Take firm-level data, clean, analyze, estimate production function(s)
 - Many issues here...
 - Calculate firm-level TFP
- Analyze geographical structure of firm productivity
 - Measure agglomeration effects (elasticity to city size)
 - With historical instruments for city size
 - For different industries
 - Inside vs outside the industry (industry employment vs city size)
 - Look for the evidence of selection
 - Quantiles of productivity distribution
 - Spatial extent of agglomerations?
 - Productivity declines in agglomeration shadows
 - How do other measurable first and second nature features of geography (ports, transport, border, centrality, etc) affect productivity?

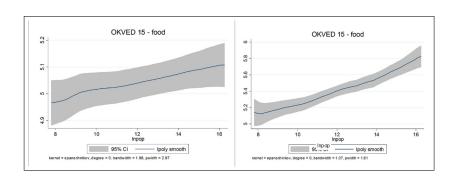
Data on Russian firms

- Source: RUSLANA (Bureau van Dijk) up to 5 million firms, 2003-2014
- Manufacturing (primary OKVED 15-37) with \geq 5 employed and non-zero revenue 140 000 firms
- Good coverage from 2011 on, we look at 2007-2014
- Nonmissing data on revenue, costs, capital, labor, address
- Nonmissing data on investment, materials
- Sample size (what is left) = unbalanced panel, 9-12 thousand firms (!)

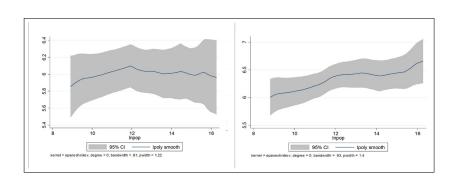
Production function


- Cobb-Douglas p.f. In $Y_{it} = a_t + w_i + \alpha \ln K_{it} + \beta \ln L_{it} + e_{it}$, estimating by different methods
 - Pooled OLS, FE, RE, Olley-Pakes, Levinson-Petrin
- Variables:
 - Labor = yearly average full-time employment
 - Capital = "osnovnye fondy" (rules for market valuation, depreciation vary)
 - Output = value added
 - Yearly revenues declared costs + costs of labor
 - Yearly payments received paid for materials and to contractors
 - Investment (1)declared, 2)recovered from capital data)
- Separately for 2-digit OKVED industries
- (?) Check for consistency against capital/labor shares of product

Most realistic estimates - RE


Definition of Y matters

1) - Payments, 2) Declared VA


Definition of Y matters, but not for all industries (OKVED 15 - food)

1) - Payments, 2) Declared VA

Definition of Y matters, but not for all industries (OKVED 20 - wood)

1) - Payments, 2) Declared VA

Estimation, OLS

	TFP-1	TFP-1	TFP-2	TFP-2
Indep. Var	(payments)	(paymnts)	(declared)	(declared)
Ln (Pop 2010)	0.008	0.014	0.086	0.096
	(0.006)	(0.006)**	(0.006)***	(0.006)***
Industry dummies	-	+	-	+
N obs	12164	12164	12081	12081
R-sq	0.0001	0.21	0.02	0.21

Estimation, IV

Dep. var	Ln(Pop2010)	TFP-1	Ln(Pop2010)	TFP-1	TFP-2	TFP-2
		(payments)		(payments)	(declared)	(declared)
Indep. var.	(1)	(2)	(3)	(4)	(5)	(6)
Ln(Pop1897)	-0.025		0.855			
	(0.005)**		(0.003)**			
Ln(Pop1959)	0.965					
	(0.005)**					
Ln(Pop2010)		0.025		0.031	0.120	0.113
		(0.007)**		(0.008)**	(0.008)**	(0.007)**
N obs	9982	9982	9982	9982	9955	9949
R-sq	0.95	0.19	0.81	0.19	0.19	0.19
F-stat	1.4e+05		228.96			
on instruments						
Instruments,		1959,1897		1897	1897	1959,1897
years						

The effects are much stronger than in OECD countries!

Estimation, separately for industries

Examples:

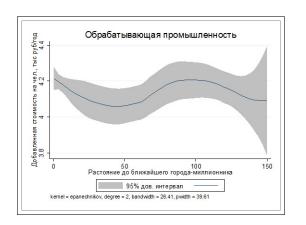
Industry	Name	Elasticity	N. obs	R-sq
(OKVED-2)		TFP-1(s.e.)		
		TFP-2(s.e.)		
15	Food	0.028 (0.013)**	1960	0.003
		0.101 (0.130)**	2017	0.02
22	Publishing	0.071 (0.017)**	1045	0.001
		0.211 (0.016)**	1059	0.14
29	Machines & equipment	-0.0006 (0.016)	1555	0.00
		0.069 (0.016)**	1537	0.01
23	Oil products	-0.073 (0.118)	77	0.005
		-0.065 (0.120)	76	0.004

No agglomeration effects if returns to scale are internal Stronger for consumer industries, weak or none for resource-based industries

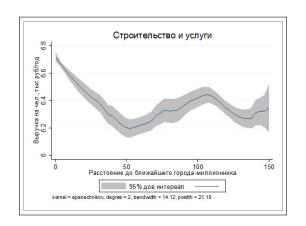
Role of Soviet legacy (?) Old vs new firms (?)

Quantile regressions on city size

Quantile	Elasticity of	Elasticity of	
	TFP-1	TFP-2	
5%	-0.057	0.087	
	(0.020)**	(0.018)**	
25%	-0.015	0.089	
	(0.007)**	(0.008)**	
50%	0.018	0.089	
	(0.006)**	(0.005)**	
75%	0.043	0.106	
	(0.005)**	(0.006)**	
95%	0.086	0.124	
	(0.010)**	(0.012)**	


TFP-2: No selection at the bottom, dilation at the top (leaders emerge in large agglomerations) TFP-1: Dialation at the bottom (!) - inefficient firms survive in large city?

Both: no evidence of competitive selection


Agglomeration shadow, manufacturing, Moscow and St. Petersburg

Agglomeration shadow, manufacturing, 1 mil cities

Agglomeration shadow, construction and services, 1 mil cities

Conclusions

- Agglomeration effects in Russia are heterogeneous by industry, but are very strong overall
- All of the effect is due to productivity gains, none due to selection
- Some suggestive evidence that Soviet legacy still works against agglomeration benefits

To do (properly):

- Geographical extent of agglomeration benefits
- Internal or external agglomeration benefits?
 - Preliminary results: employment in the same industry in 60 km radius raises productivity, city size does not matter, connected industries (vertical chains) do not matter
- Other geographical features and transport